2013年 桜蔭中『算数』入試分析

昨年と比較して全体的に易化したといえる。計算のスピードと正確さを意識してあげていくことはもちろん、条件どおりに書き出していく処理についてもクオリティを高めていく必要がある。「みんなが取れる問題」が増えているため、確実さを重視していこう。

計算および仕事算+カレンダーの問題
計算は面倒だが手早く正確にすませたい。 仕事算とカレンダーの問題には、公倍数・書き出しの緻密さ・カレンダー処理の丁寧さが求められる。時間さえかければ正解することは容易だが、これに時間を取られていては合格はおぼつかない。解答欄に式が要求されていないとおり、桜蔭生にとってこれは計算問題にすぎないのだ。

数の性質
「まず何かとりかかってみる」という資質さえあれば平易な問題。108を9×12に、あるいは6×18に分解してみて、他の数字と矛盾しないか当てはめていけばよい。6の倍数や9の倍数といった、受験生になじみ深い数であるゆえ、さして時間はかからないはず。念のため、検算をするクセもつけておきたい。

旅人算
もっとも重要なのは丁寧さ。(1)でグラフを書きながら、問題分の条件に慣れていく。(2)の確実なやり方は、そのままグラフを書き続けること。
算数はすべての問題について、頭の中で最短ルートがひらめくわけではない。そして、最短ルートがひらめかなかった段階で「わからない」と言ってしまう子はたいへん多い。しかし、与えられた条件のもとで「書き出す」あるいは「当てはめる」といったことを繰り返すことで、規則性なり上手い解法なりを見つけていくことは可能である。
「考える力」の中には「法則を見つけ出す労を惜しまない姿勢」も含まれるのだ。

平面図形+比 早くて正確な計算力をベースとして、図形の基本と比の基本を問う良問。新小6に上がり立ての子でも正解可能なのでぜひチャレンジしていただきたい。 「1本の辺の長さが同じならば、もう1方の辺の長さの比がそのまま面積比になる」ということは自明であるし、「A×P=B×Qの場合、P:Q=B:Aである」というのも自明である。 「A+B=247」で「297×A=73.5×B」というところにたどりつけば正解はすぐそこだ。

立体図形
処理は煩雑だが、例年よりも易化している。
(1)と(2)は桜蔭受験生なら朝飯前だろう。(3)は時間がかかるがけっして難しいわけではない。穴を開けることによって消える表面と、新たに生まれる表面とを丁寧に洗いだすことで正解できる。

しかし、計算のやり方に工夫の余地はある。問題分の順番どおり「円Aの穴をあけてから正方形Bの穴をあける」という処理をするよりも、「正方形Bの穴をあけてから円Aの穴をあける」という手順で計算したほうがずっと楽になる。 これに気付くためにも、「3.14のからむ計算はなるべく後回しにして回数を減らす」という習慣を早いうちに身につけたい。



2013年

開成中
解説 算数 国語 理科 社会
問題 PDF

(196Kb)
- PDF

(467Kb)
PDF

(738Kb)
麻布中
解説 算数 国語 理科 社会
問題 PDF

(272KB)
- PDF

(1.9MB)
PDF

(2.3MB)
桜蔭中
解説 算数 国語 理科 社会
問題 PDF

(149KB)
- PDF

(376KB)
PDF

(504KB)

ご相談・お申し込みはこちらから

お電話でのお問い合わせ:03-6425-9495 11:30-19:30

サイトからのお申込み

お申込み・お問い合わせ »